Total Elbow Replacement
History and Indications

Jenő Kiss MD PhD
Department of Orthopaedic and Trauma Surgery
Saint John’s Hospital
Budapest, Hungary
Population : 10 million
Territory : 93 000 square Km
Language : Hungarian
Politics : parliamentary democracy
National health service
35 000 doctors
1 000 orthopedic and trauma surgeons
Saint John’s Hospital, Budapest

founded in 1893

1 100 beds,
more than 40 000 inpatients treated yearly
700 000 outpatient examinations yearly
Department of Orthopaedic and Trauma Surgery

founded in 1919

68 beds
19 doctors
3 000 operations done yearly
40 000 outpatients seen yearly
Indication of elbow arthroplasty

- rheumatoid arthritis
- primary osteoarthritis
- post-traumatic arthritis
- non-union
- instability
- comminuted fracture
- pathological fracture
- previous infection
- stiff elbow
- failed elbow replacement
Contraindications

- active sepsis
- neuropathies
 - diabetes, syringomyelia, etc.
- nutritional deficiencies
- lack of co-operation
- severe bone deficiency (?)
- severe soft-tissue deficiency (?)
Surgical options

- fusion
- interposition arthroplasty
- reconstruction with massive allograft
- total joint replacement
 - custom made implant
 - oncological total joint
 - implant from shelf
- +/- soft-tissue reconstruction
Which is the good total elbow

- durable
- few complications
- easy to implant
- good clinical results
- wide range of indications
- interchangeable
Classification

linked or unlinked

- constrained
- semiconstrained
- unconstrained
HEMIARTHROPLASTY

limited number of cases with moderate experience

1927 - Rubineau - metal + rubber on humerus
1937 - Virgen - metal on olecranon
1947 - Mellen - acrylic humeral comp.
1951 - Carr - Vitallium radial head
1953 - Cherry - acrylic radial head
1971 - Peterson - Vitallium on olecranon notch
1974 - Street - humeral resurfacing
RIGID HINGES

24 - 30% poor results, 13 - 68% loosening, up to 48% complications

1972 - Dee
1973 - Souter
1977 - Garrett & Edwald
1979 - Cooney & Bryan (111 cases)
1979 - Cofield (346 cases)
1982 - Morrey and Bryan
UNLINKED TEA
(nonconstrained?)

80 - 90% excellent and good results

- needs relatively good bone stock and intact ligaments
- minimal bone resection
- adjusts more naturally to normal kinematics
- but instability and loosening are still a concern
Unlinked TEA (nonconstrained ?)

1984 - Soni - 80 Liverpool elbows at 3.5 years with 17% loosening

2003 – Mansat – 19 GUEPAR-I elbows at 5.5 years with 68% complications and 31% revisions

2003 – Alnot – 16 GUEPAR-III elbows at 2 years with 15 excellent and 1 fair results

2004 – Willems – 36 elbows at 4.8 years with high rate of loosening and dislocation

2006 – Mori – 14 elbows with bone grafting in severe RA at 5 to 11 years no major complications (?)

2006 – Thillemann – 17 elbows at 9.5 years 68% survival, 5 revised, high rate of ulnar valgus tilt observed

2006 – Tanaka – 56 elbows with two different cemented ulnar comp. metal-backed were superior to all-poly comp.

2007 – van der Heide – 89 elbows at 6 years, 7 ulnar revised and 7 loose out of 40 uncemented, no revision performed of cemented ulnar and uncemented humeral comp.
1989 – Souter - 250 elbows at minimum 10 years with 12% loosening and 5.5% instability
1999 - Trail - 186 elbows at 12 years with 13% loosening and 12.5% instability
2002 - Trail - 107 elbows with long humeral implant and 202 with standard at 4.4 and 9.3 year with less loosening of humeral comp. when long stem used, more revisions if snap-fit ulna used
2005 – van de Lugt – 204 elbows with 77% survival at 10 years and 65% survival at 18 years
2005 – Khatri – 47 elbows at 7 years 75% survival for all failure, and 97% survival for loosening
2006 – Landor – 49 elbows used in RA at 9.5 years with 17% loosening, 1.7% instability
2008 – Skyttä – 21 Souter and 21 Kudo TEA in RA
- 5 year survival was 85 % and 95% respectively
- only slight functional improvement
- more than half of the patients were independent
- 6 revisions overall
- no significant difference between the two implants
Unlinked iBP TEA (nonconstrained ?) used for distal humeral fractures

2008 – Kalogrianitis – 9 iBP TEA
- at 3.5 years Mayo score 95 (65-100)
- all were stable
- all patients capable for self-care
2006 – van de Lung – 24 revisions performed with Souter TEA

- At 5 years 74% still in situ
- 8 had to be re-revised
- 3 of them revised third time
- 7 further loosening
- 2 excision due to infection
2007 – Tomita – 30 revisions of surface replacements to surface replacements at 6.5 years Mayo score improved from 43 to 76
conversion from nonconstrained to semiconstrained with special locking mechanism or by using different component

2007 – Bassi – 36 elbows, no loosening at 3 years
11 intraop. humeral fractures (!!!), 1 deep infection
2008 – Anmin – 8 cases for revisions of failed TEA or for complex fracture complications

- at 4 years one failed due to sepsis but 7 satisfactory
SEMICONSTRAINED TEA
(sloppy hinge)

- Since 1975, wide range of indication
- 85-90% excellent and good results
- Better implant survival
- No instability

1976 - Schlein - 400 Schlein elbows at 3 years, 2.75% loosening
1980 - Inglis - 36 Pritchard and Tri-Axial elbows at 3.7 years, 53% complication rate
SEMICONSTRAINED TEA
(sloppy or loose hinge)

1988 - Gschwend - 71 GSB-III elbows at 4 years, only 1 loosening, 91% excellent and good results
2006 – Jensen – 20 GSB-III elbows at 5 years, only 1 loosening, 91% excellent and good results
2007 – Cesar – 58 GSB-III elbows at 6 years, 2 revised, 6 loose but 84% excellent and good results
COONRAD-MORREY ELBOW (1979)

- sloppy hinge (semiconstrained) with polyethylene bushing with 7 degrees of laxity
- „anterior flange”
- Tivanium (Ti-6Al-4V) alloy
- triangular humeral and quadrangular ulnar component
- 12 humeral and 10 ulnar components
- complete interchangeability
- wide range of indications
- most published data
Literature

1992 - Morrey and Adams - 54 RA cases
 91% excellent and good at 2-8 years, no loosening
1995 - Morrey and Adams - 36 humeral nonunions
 86% excellent and good at 4.2 years, no loosening
1997 - Cobb and Morrey - 21 acute fractures
 96% excellent and good at 3.3 years, no loosening
1997 - Schneeberger et al. - 41 post-trauma cases
 83% excellent and good at 5.8 years, no loosening but 12% ulnar comp. fracture
1997 - King et al. - 41 revisions
 85% excellent and good at 6 years, 41% intra-op. and 32% post-op. complications
 8 additional op., 3 re-revisions, 4 excisions
1998 - Gill and Morrey - 76 RA cases
 88% excellent and good at 10 to 15 years, 92.4% prosthesis survival rate !!!
1999 - Connor and Morrey - 22 JCA cases
 90% excellent and good at 7.4 years, 10% loosening
1999 - Ramsey et al. - 19 instability cases
 84% excellent and good at 6 years, no instability, 1 humeral comp. loosening, 2 ulnar comp. fractures
2005 - Mighell et al. - 6 chronic dislocations
 no loosening at 5.8 years, no instability, 1 periprosthetic fracture, 1 bushing exchange
2005 – Muller et al. - 49 acute fractures
 5 revisions performed at 7 years
2006 – Athwal et al. - 20 tumor cases
 70% died but 75% had local control of tumor, Mayo score improved from 22 to 75, but 35% had early complications and 20% were revised
2006 – Athwal at Morrey – 37 revisions of different fractured elbow replacements
 good functional results, but high complication rate if cement had to be removed
2006 – Aldridge et al. – survival of 41 elbows at 10 to 31 years
 21 were functional 10-14 years, 10 between 15-19 years, and 10 between 20-31 years, 14 complications, 13 revisions
2006 – Lee et al. – 7 acute fractures
 at 2 years Mayo score was 94, average flexion arc was 88 degrees
2007 – Shi et al. – 67 elbows, 37 primary and 30 revisions
 at 5.5 years Mayo score was 85 and 84 and the survival was 72% and 64% respectively
2007 – Matsumoto et al. – 13 elbow with periop. condylar fractures and 27 intact elbows
 no difference of Mayo score strength and ROM at 4.8 years
2008 – Cil et al. – 92 humeral nonunions
 85% excellent and good at 5.5 years, 44 complications, 32 reoperations, 23 revisions
 96% survival at 2 years, 82% survival at 5 years, 65% survival at 15 years
2008 – Peden and Morrey - 13 cases of ankylosed elbows
 7 good and excellent at 12 (2-26) years, 37 to 118 degrees of flexion, but high complication rate
2008 – Prasad and Dent – 15 acute fractures and 17 post-trauma cases
 less complications and better survival in acute cases 93% versus 76% at 7 years
Complication rate of TEA according to the literature

20-57% !!!

- Ulnar nerve neuritis: 3-15%
- Instability: 3-10%
- Infection: 2-6%
- Wound brake down: 2-4%
- Triceps rupture: 2-4%
- Periprosthetic fracture: 1-5%
- Component fracture: 0.5-1.5%
- Hematome: 3-7%
- Pulmonary embolism: 0.3%
- 90 day mortality: 0.6%
Complications of total elbow replacement: A systematic review

Ilya Voloshin, MDa,*, David W. Schippert, MDa, Sanjeev Kakar, MD, MRCS, MBAb, Elizabeth Krall Kaye, PhD, MPHc, Bernard F. Morrey, MDb

Late complications in elbow arthroplasty

Norbert Gschwend, MD, Beat R. Simmen, MD, and Z. Marejovsky, MD, Zürich, Switzerland

Copyright © 1996 by Journal of Shoulder and Elbow Surgery
Board of Trustees.
1058-2746/96/$5.00 + 0 32/1/71200

1993-2009
64 studies
2938 cases

1986-1992
22 studies
828 cases
Change of complications by time

<table>
<thead>
<tr>
<th>Complication</th>
<th>Incidence (%)</th>
<th>Incidence (%) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseptic loosening (clinical)</td>
<td>6.4</td>
<td>5.1 ± 3.4(^{*})</td>
</tr>
<tr>
<td>Aseptic loosening (clinical and radiographic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlinked designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dislocation/subluxation</td>
<td>6.5</td>
<td>4.7 ± 3.0(^{*})</td>
</tr>
<tr>
<td>Infections, deep</td>
<td>4.6</td>
<td>3.3 ± 2.9(^{*})</td>
</tr>
<tr>
<td>Intraoperative fractures</td>
<td>3.2</td>
<td>3.0 ± 2.7(^{*})</td>
</tr>
<tr>
<td>Fractures of prosthesis</td>
<td>0.6</td>
<td>2.9 ± 3.6(^{*})</td>
</tr>
<tr>
<td>Ulnar nerve complications</td>
<td>10.4</td>
<td>2.9 ± 2.4(^{*})</td>
</tr>
<tr>
<td>Delayed healing</td>
<td></td>
<td>2.5 ± 2.6(^{*})</td>
</tr>
<tr>
<td>Postoperative fracture</td>
<td>2.4 ± 2.1(^{*})</td>
<td></td>
</tr>
<tr>
<td>Triceps complications</td>
<td>2.4 ± 2.4(^{*})</td>
<td></td>
</tr>
<tr>
<td>Bushing wear</td>
<td>2.3 ± 3.4(^{†})</td>
<td></td>
</tr>
<tr>
<td>Disassembly</td>
<td>2.3 ± 3.5(^{†})</td>
<td></td>
</tr>
</tbody>
</table>

\(^{*}\) Incidence as weighted mean ± SD.

\(^{*}\) Total number of TEAs = 2938.

\(^{***}\) Total number of TEAs = 703.

\(^{†}\) Total number of TEAs = 1071.

\(^{†}\) Total number of TEAs = 865.
Overall complication rate by implant

<table>
<thead>
<tr>
<th></th>
<th>Rate (± SD)</th>
<th>More complex cases</th>
<th>More RA cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked</td>
<td>25.9 ± 8.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlinked</td>
<td>27.2 ± 6.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.s.
Instability

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked</td>
<td>$1.4 \pm 4.5 %$</td>
</tr>
<tr>
<td>Unlinked</td>
<td>$4.9 \pm 3.9 %$</td>
</tr>
</tbody>
</table>

$P < 0.05$
Loosening

<table>
<thead>
<tr>
<th></th>
<th>Clinical</th>
<th>Clinical + radiological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked</td>
<td>5.2 ± 4.5 %</td>
<td>13.7 ± 6.8 %</td>
</tr>
<tr>
<td>Unlinked</td>
<td>5.2 ± 3.8 %</td>
<td>10.1 ± 4.8 % P<0.05</td>
</tr>
</tbody>
</table>

Resultant vector of forces = 3 times body weight
Complications by diagnosis

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Complication Rate (± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>24.3 ± 5.8 %</td>
</tr>
<tr>
<td>Trauma</td>
<td>21.5 ± 9.2 %</td>
</tr>
<tr>
<td>Post-trauma</td>
<td>37.5 ± 9.2 %*</td>
</tr>
</tbody>
</table>

*P<0.05
Differences in TEA in RA

2007 – Schmidt – 177 elbows
- 126 GSB-III, 46 Coonrad-Morrey, 24 Souter, 4 rigid hinge, 2 custom-made, 1 Pritchard
- 34.4% complication rate
- 27% revision rate for loosening, infection or dislocation
- linked implants had better survival and no dislocation
- implants with ventral or epicondylar flanges had better load transfer and better survival
Thank you for your attention!