

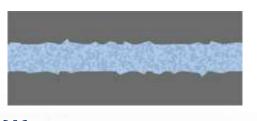
Общие вопросы трибологии

Шубняков И.И.

Триболо́гия (лат. tribos – трение)

- Раздел физики, занимающийся исследованием и описанием контактного взаимодействия твёрдых деформируемых тел при их относительном перемещении
- Областью трибологических исследований являются процессы трения, изнашивания и смазывания

Трение – процесс взаимодействия тел при их относительном движении (смещении)


- Сила трения сила препятствующая относительному движению двух контактирующих тел
- Коэффициент трения основной параметр, характеризующий трение – отношение силы трения между двумя телами к нормальной силе, прижимающей эти тела друг к другу

Виды сил трения

- Трение скольжения силы, возникающие в зонах контакта между соприкасающимися телами при их относительном движении
- Трение качения сопротивление движению, возникающее при перекатывании тел друг по другу
- Трение покоя сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга

Смазывание – процесс формирования жидкостной пленки

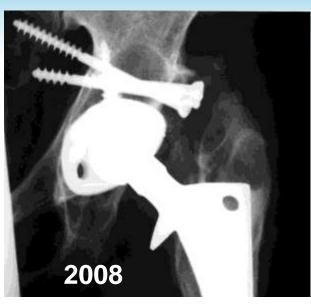
 В результате которого между двумя поверхностями уменьшается сила трения и (или) интенсивность изнашивания

Жидкостное трение

Смешанное трение

Граничное трение

Изнашивание – процесс разрушения и отделения материала с поверхности твердого тела при трении


- Проявляется в постепенном изменении размеров и/или формы тела
- Износ итог изнашивания, определяемый в установленных единицах
- Износостойкость свойство материала оказывать сопротивление изнашиванию в определенных условиях трения

Механизмы изнашивания

- Адгезия (схватывание, отслаивание)
- Истирание (абразивный износ)
- Усталость (выкрашивание)
- Окисление контактирующего слоя
- Изнашивание с «третьим телом»
 - Третье тело инородное тело в узле трения или рабочий слой, образующийся на поверхности трущихся тел

Режимы изнашивания

Первый режим – естественное изнашивание вследствие взаимного движения двух первичных трущихся поверхностей при их нормальном взаиморасположении

 Проявляется пенетрацией и децентрацией

Второй режим – несанкциониванное изнашивание вследствие возникновения контакта между первичной трущейся поверхностью и вторичной, не предназначенной для контакта с первичной

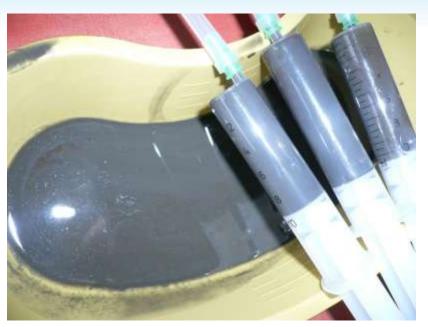
- в результате избыточного изнашивания в первом режиме
 - при пенетрации полиэтиленового вкладыша металлической или керамической головкой эндопротеза и формированием зоы трения с металлической оболочкой вертлужного компонента

Второй режим – несанкциониванное изнашивание

• Край шейки и полиэтиленового вкладыша

Третий режим это компромитированное естественное изнашивание двух первичных трущихся поверхностей за счет попадания между ними частиц третьего тела

- Попавшие в зазор пары трения частицы участвуют в восприятии приложенной нагрузки
 - впрессовываются в поверхности трения
 - раздавливаются на более мелкие фракции, скользят или перекатываются вдоль поверхности изнашивания, упруго и пластически деформируя ее
- Обладающие абразивным действием частицы непосредственно воздействуют на одну или обе первичные трущиеся поверхности и ускоряют процесс изнашивания в первом режиме


Перелом керамического элемента

Шесть недель спустя – абразивное изнашивание металлической головки

Четвертый режим – непредусмотренное изнашивание между двумя контактирующими вторичными поверхностями

- Импинджмент между шейкой эндопротеза и чашкой
- Взаимодействие внешней поверхности модульного вкладыша и металлической основы вертлужного компонента (износ обратной стороны)
- Фреттинг-коррозия между вертлужным компонентом и фиксирующим винтом или между модульной головкой и шейкой эндопротеза
- Частицы, образующиеся в результате четвертого режима изнашивания могут мигрировать в основное сочленение усугубляя естественный процесс трением с третьим телом

Оптимизация процесса трения

- Улучшение свойств поверхности
- Предупреждение импинджмента между частями эндопротеза
- Обеспечение условий для гидродинамического трения

Пары трения с разным модулем упругости

- Полиэтилен металл
- Полиэтилен керамика

- Преимущества:
- Предотвращение адгезии
- Снижение коэффициента трения
- Недостатки:
- Истирание более мягкой поверхности

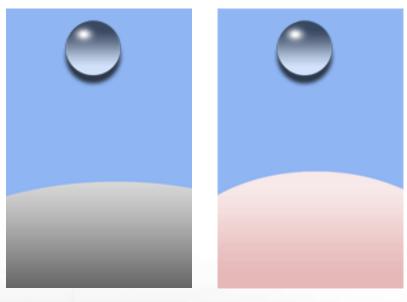
Твердые пары трения

- Металл-металл
- Керамика-металл

- Преимущества:
- Высокая износостойкость
- Устойчивость к изнашиванию с третьим телом
- Недостатки:
- Высокая чувствительность к позиции компонентов

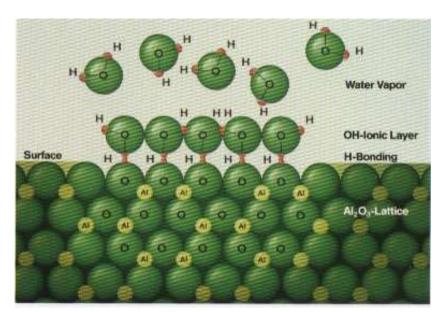
Линейный износ материалов в зависимости от пары трения

Линейный износ материалов в зависимости от пары трения

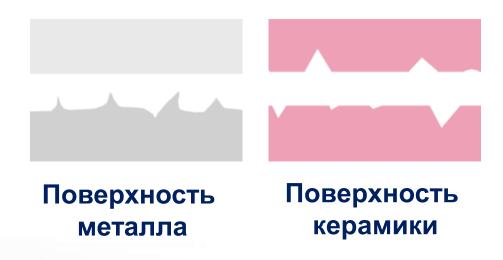


Свойства поверхности

 Твердость – обеспечение лучшей полировки поверхности и высокой


износостойкости

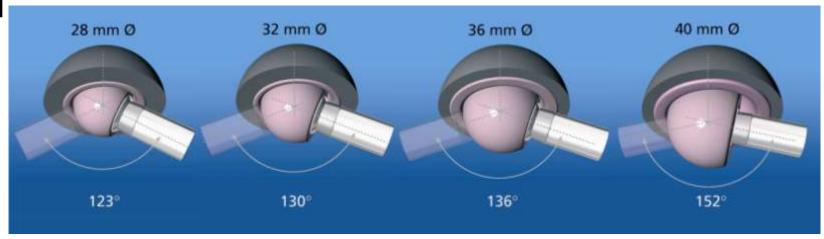
Смачиваемость

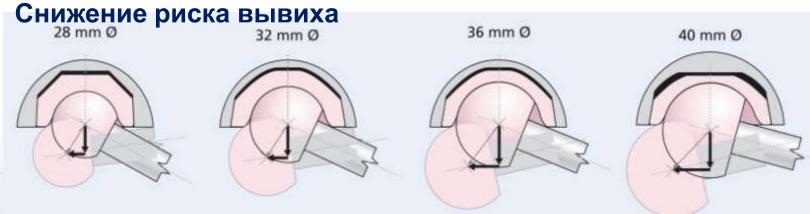

Поверхность ²¹металла

Поверхность керамики

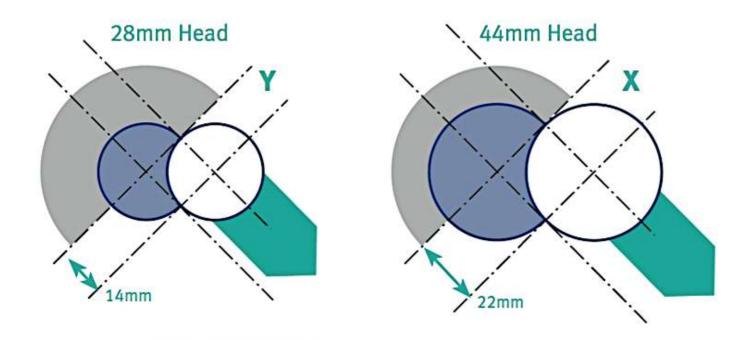
Свойства поверхности

- Устойчивость к изнашиванию с третьим телом
- Особенности поверхности царапины на керамике не имеют выступающих краев

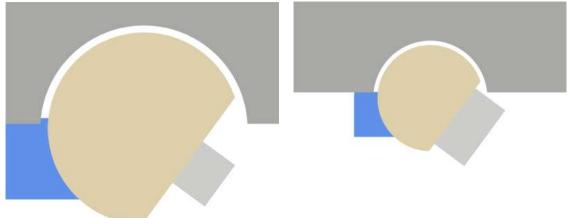

Качество обработки трущихся поверхностей - оптимизация процесса трения


Микроструктура поверхности Идеальная сферичность

Предупреждение импинджмента между частями эндопротеза за счет использования пары трения большого диаметра


ROM

"Jumping Distance"


Чем больше диаметр пары трения тем больше "Jumping Distance" (X > Y)

Увеличение диаметра головки

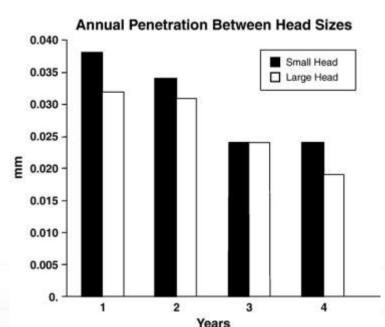
•В теории:

- Создает условия для гидродинамического трения
- Уменьшает линейный износ полиэтилена
- Способствует увеличению амплитуды движений

• На практике:

- Увеличивает объемный износ
- Увеличивает момент сил трения качения и трения покоя

Увеличение износа или увеличение ROM?


Клиническое исследование пациентов с головками эндопротеза 28/32 мм и 38/44 мм

- Обе группы имели одинаковый линейный износ
- Объемный износ был почти в 2 раза выше в группе 38/44 мм
- Не было улучшения амплитуды движений в группе 38/44 мм в сравнении с группой 28/32 мм

The Journal of Arthroplasty Vol. 25 No. 6 2010

Wear and Range of Motion of Different Femoral Head Sizes

Eric Mark Hammerberg, MD, Zhinian Wan, MD, Manish Dastane, MD, and Lawrence D. Dorr, MD

Увеличение диаметра пары трения ведет к снижению риска вывихов

Effect of Femoral Head Diameter and Operative Approach on risk of dislocation After Primary Total Hip Arthroplasty

Berry et al JBJS(Am) 2005

21,000 operations over 30 yrs

"In Total Hip Arthroplasty a larger femoral head was associated with a lower long-term cumulative risk of dislocation."

Оптимизация использования пар трения

- Создание условий для гидродинамического трения
 - Увеличение диаметра головки способствует формированию жидкостной пленки
- Высокое качество обработки поверхности
 - Снижение коэффициента трения
- Правильное положение компонентов
 - Оптимизирует распределение нагрузки
 - Предотвращает несанкционированное трение

